Code No.	Symbol N	umber:	Invigilator's Sign:	Superintendent's Sign.			
	Symbol No. in Words:		mrighteer 5 organ	Supermeendene 5 Signi			
Faculty: Engin	eering	Level: Bachelor	Exam Year:2080	Year/Part :II/I			
	8		Mangsir				
Program: Elec	ctrical and	l Electronics		Subject: Logic Circuit (EG502EX)			
GROUP A (M	lultiple Ch	oice Questions)		[10x1=10]			
<i>i.</i>	Answers sh	ould be given by filling	the Objective Answer Sheet	-			
11. 	Rough can Marian	be done in the main an	swer sheet				
<u>111.</u>	Maximum	time of 20 minutes with	lin the total time is given jo	r this group			
1.	The gray	v code conversion of 11	1010 ₂ is:				
	a.100)112		b. 101112			
	c.00	1012		d.00110 ₂			
2.	In a NAN	ID gate, the output is h	igh when				
	a. Al	l the inputs are low	0	b. All the inputs are high			
	c. Aı	ny one input is low		d. Any one input is high			
2							
3.	In Boole	an algebra, A+ A'B is e	qual to:				
	a. 0			b. A			
	с. В			d. A+B			
4.	The num	iber of inputs and outp	outs of a full adder circuit a	re:			
	a. 2	and 2		b. 2 and 3			
	C. 3 a	and Z		d. 3 and 3			
5.	Which o	f the following binary	number has even parity?				
	a. 11	01101 ₂		b. 11010102			
	c. 10	0101002		d. 0110111 ₂			
6.	In a JK F	lip Flop, if J=K=1, what	will be the output of the fl	ip-flop?			
	a. Qn	+1 = 0		b. $Q_{n+1} = 1$			
	c. Q _n .	$+1 = Q_n$		$d. Q_{n+1} = Q_n'$			
7.	7. We need at least flip-flops to design a Mod-10 counter.						
	a. 1			b. 2			
	c. 3			d. 4			
Q	F 1						
δ.	For a do	wn counter, the next o	utput after 1000 ₂ will be:	L 0000			
	a. 100	J12					
	C. UI.	112		u. 11112			
9.	The num	The number of states for a 2-bit gray code sequential circuit will be					
2.	a 2		it gray coue sequential ene	h 3			
	c. 4			d. 8			
10). In a 4-b	it Register, if the input	s are sent one bit at each o	clock pulse and the output is taken all 4-			
	bits at a	single clock pulse, thei	n the register is				
	a. PISO			D. 51PU			
	C. PIPU			u. 5150			

Code No. Marks Secured: 1.	A B C D	6. A B C D
Corrected Fill In Words: 2.	A B C D	7. A B C D
A ● C D Examiner's Sign: Date: Scrutinizer's Marks: 3.	A B C D	8. A B C D
Incorrected Fill In Words: 4.	A B C D	9. A B C D
Scrutinizer's Sign: Date: 5.	A B C D	10. A B C D

Multiple Choice Questions' Answer Sheet

MANMOHAN TECHNICAL UNIVERSITY **Office of the Controller of Examinations**

Budhiganga-4, Morang, Province 1, Nepal

Faculty: Engineering	Exam Year:2080 Mangsir	Year/Part: II/I
Program: Electrical and Electronics	Level: Bachelor	F.M.: 50
Subject: Logic Circuit (EG502EX)	Time: 3 Hours	P.M.: 20

- ✓ Group A contains Multiple Choice Questions of 10 marks.
- ✓ Candidates are required to give their answers in their own words as far as practicable.
- The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

Group 'B'

Short Answer Questions (Attempt any EIGHT questions only.)

- **1**. Subtract using 2's complement method. 1101010₂-1010111₂
- **2.** Convert into the given form: a)FF₁₆ to Octal
- b) 1011101₂ to Grav Code 3. Realize the circuit of AND gate using NOR gate only.
- **4.** Prove that (using Boolean algebra): A.B+ \overline{A} C = (\overline{A} +C)(A+B)
- 5. Draw the truth table and logic circuit of 8:1 Multiplexer.
- 6. Draw the truth table and logic circuit of a Half Subtractor circuit. 7. Draw the circuit diagram and excitation table of a NAND gated SR Flip Flop.
- 8. Draw the circuit diagram of 4-bit Ring Counter.
- 9. Realize NAND gate using TTL Logic.

Group 'C'

Long Answer Questions (Attempt any SIX questions only.)(6×4=24)

- 10. Simplify using K-Map for $\Sigma(1,2,3,8,9,10,11,14) + \Sigma d$ (0,4,12) and write the expression in Sum-of-Products form.
- 11. Realize the logic circuit for 1-bit magnitude comparator.
- 12. Realize a T flip-flop using D flip-flop.
- 13. Design a decade counter using T flip-flop.
- 14. Explain SISO register with logic circuit and timing diagram.
- 15. Design a sequential machine that has serial input X and output Z. The output Z will be 1 only when the sequence of inputs is 10102. Use T Flip-flop for the design.
- 16. Realize the circuit for CMOS NAND Gate.

$\infty \otimes All$ the Best $\infty \otimes$