\qquad Invigilator's Sign: \qquad Superintendent's Sign: \qquad
\square Symbol No. in Words:

Faculty: Engineering

Level: Bachelor

Exam Year:2080
 Mangsir

Program: Electrical and Electronics

Subject: Logic Circuit (EG502EX)
[10×1=10]
GROUP A (Multiple Choice Questions)
i. Answers should be given by filling the Objective Answer Sheet.
ii. \quad Rough can be done in the main answer sheet
iii. Maximum time of 20 minutes within the total time is given for this group

1. The gray code conversion of 11010_{2} is:
a. 10011_{2}
b. 10111_{2}
c. 00101_{2}
d. 00110_{2}
2. In a NAND gate, the output is high when \qquad
a. All the inputs are low
b. All the inputs are high
c. Any one input is low
d. Any one input is high
3. In Boolean algebra, $A+A^{\prime} B$ is equal to:
a. 0
b. A
c. B
d. $A+B$
4. The number of inputs and outputs of a full adder circuit are:
a. 2 and 2
b. 2 and 3
c. 3 and 2
d. 3 and 3
5. Which of the following binary number has even parity?
a. 1101101_{2}
b. 1101010_{2}
c. 10010100_{2}
d. 0110111_{2}
6. In a JK Flip Flop, if $\mathrm{J}=\mathrm{K}=1$, what will be the output of the flip-flop?
a. $Q_{n+1}=0$
b. $Q_{n+1}=1$
c. $\mathrm{Q}_{\mathrm{n}+1}=\mathrm{Q}_{\mathrm{n}}$
d. $Q_{n+1}=Q_{n}{ }^{\prime}$
7. We need at least flip-flops to design a Mod-10 counter.
a. 1
b. 2
c. 3
d. 4
8. For a down counter, the next output after 1000_{2} will be:
a. 10012
b. 0000_{2}
c. 0111_{2}
d. 1111_{2}
9. The number of states for a 2-bit gray code sequential circuit will be:
a. 2
b. 3
c. 4
d. 8
10. In a 4-bit Register, if the inputs are sent one bit at each clock pulse and the output is taken all 4bits at a single clock pulse, then the register is
a. PISO
b. SIPO
c: PIPO
d: SISO

Multiple Choice Questions' Answer Sheet
\square
Code No.
Marks Secured: \qquad
 In Word

\qquad Date:
Examiner's Sign: \quad Scrutinizer's Marks: ___ \quad Date:
In Words:
Scrutinizer's Sign: ___ Date:

1. (A) (B) C (D)	6. (A) (B) (C)
2. (A) B (C) (D)	7. (A) (B) (C)
3. (A) B (C) (D)	8. (A) (B) (C) (D)
4. (A) (B) (C)	9. (A) (B) (C) (D)
5. (A) B (C) (D)	10. (A) (B) (C) (D)

MANMOHAN TECHNICAL UNIVERSITY

Office of the Controller of Examinations

Faculty: Engineering
Program: Electrical and Electronics
Subject: Logic Circuit (EG502EX)
Exam Year: 2080 Mangsir
Year/Part: II/I
Level: Bachelor
F.M.: 50

Time: 3 Hours
P.M.: 20
$\begin{array}{ll}\checkmark & \text { Group A contains Multiple Choice Questions of } 10 \text { marks. } \\ \checkmark & \text { Candidates are required to give their answers in their own words as far as practicable. } \\ \checkmark & \text { The figures in the margin indicate Full Marks. } \\ \checkmark & \text { Assume suitable data if necessary. }\end{array}$

Group 'B'
Short Answer Questions (Attempt any EIGHT questions only.)

1. Subtract using 2 's complement method. 11010102-10101112
2. Convert into the given form:
a) FF_{16} to Octal
b) 1011101_{2} to Gray Code
3. Realize the circuit of AND gate using NOR gate only.
4. Prove that (using Boolean algebra): $\mathrm{A} \cdot \mathrm{B}+\bar{A} \mathrm{C}=(\bar{A}+\mathrm{C})(\mathrm{A}+\mathrm{B})$
5. Draw the truth table and logic circuit of $8: 1$ Multiplexer.
6. Draw the truth table and logic circuit of a Half Subtractor circuit.
7. Draw the circuit diagram and excitation table of a NAND gated SR Flip Flop.
8. Draw the circuit diagram of 4-bit Ring Counter.
9. Realize NAND gate using TTL Logic.

Group ' C '

Long Answer Questions (Attempt any SIX questions only.)($6 \times 4=24$)

10. Simplify using K-Map for $\sum(1,2,3,8,9,10,11,14)+\sum d(0,4,12)$ and write the expression in Sum-of-Products form.
11. Realize the logic circuit for 1-bit magnitude comparator.
12. Realize a T flip-flop using D flip-flop.
13. Design a decade counter using T flip-flop.
14. Explain SISO register with logic circuit and timing diagram.
15. Design a sequential machine that has serial input X and output Z. The output Z will be 1 only when the sequence of inputs is 10102 . Use T Flip-flop for the design.
16. Realize the circuit for CMOS NAND Gate.
